第3章 pn 接合ダイオード

ここでは pn 接合の基礎的な理解を目標とする。pn 接合の説明として、空乏層と電位障 壁の発生のメカニズム、接合付近の電界強度、電位分布の計算、拡散電流の計算、C-V特 性、動作速度に大いに関係する逆方向回復過程を説明する。pn 接合が理解できれば、この ほかMOSデバイスやバイポーラトランジスタのほとんどのデバイスの動作の理解が容易 である。半導体工学の基礎の基礎をここで学ぶと思っていただきたい。

1. pn 接合ダイオードと整流方程式

pn 接合はp型半導体と n 型半導体の接 合であり、p型がアノード(正極)、n型がカ ソード(負極)としたダイオードとして機能 する。

図1 pn 接合ダイオードと記号

かなり慣れた人でも pn どちらがアノード かカソードか忘れてしまうことが多い。筆 者はごろであるが、「ピーはプラス」と覚え ている。余談であるが、ドライバーやねじ、 蛇口などで、締める方向は右回り、あるいは 左回りなのか忘れることがある。この手の 失念はプラント火災の原因でもあり、現場 では「"の"の字を書く方向が締める」と覚 えるが、それを思い出した。

次の図に pn 接合の典型的な I -V 特性 を示す。p 側に正電位を加えたとき、順バイ アスの状態に相当するが、Si では 0.55 V 程度で急激に電流が流れる。整流器として

図 2 pn 接合ダイオードと V-I 特性

p 側に負の電圧を加えると、これは逆バイ アスであり、整流器としてはオフ状態であ る。このときはある程度の電圧までは電流 をとおさないが、あるところから電流が急 激に流れる。この電圧を降伏電圧と呼ぶ。 降伏現象を除いた I−V の関係は次の整流 方程式であらわされる。

$$I = I_0 \left\{ \exp\left(\frac{qV}{nk_BT}\right) - 1 \right\}$$
(1)

この式において、*I*₀は比例定数で、半導体層 の拡散やダイオードの面積によって決まる 数値である。qは単位電荷(素電荷)、Vは バイアス電圧、nは理想係数で通常1から 2の間である。理想係数は pn 接合界面の結 晶性などの品質で影響を受ける数値であり、 理想では1、結晶性が悪く間接再結合が支 配的になると2に近い数値をとる。この数 値を抽出することによって、pn 接合の品質 の良し悪しを評価することができる。k B は ボルツマン定数、T は絶対温度である。

2. pn 接合のイメージ的理解《重要》

p型半導体にはホールが多数存在し、n型 半導体には電子が多数存在している。まず はこれら塊が独立して存在して、ある瞬間 接合されたと考えよう。電子とホールはど うなるであろうか。

図 3 pn 接合ダイオードのイメージ理解のための 説明図

接合後は、p型半導体からホールがより濃 度の薄いn型半導体の方に拡散する。ホー ルが出た後には、イオン化されたアクセプ タ、すなわち負の固定電荷がそこに残る。n 型半導体にまぎれこんだホールは電子と再 結合し消失する。そこでは電子がなくなる ので、イオン化されたドナー、すなわち正の 固定電荷となる。以上のように、p型半導体 からn型半導体へホールが拡散し、一方n 型半導体からp型半導体に電子が拡散する。 ホールが出た後には負の固定電荷が、電子 が出た後には**正の固定電荷が**できる。する と次のような、負と正の面状の電荷層がで きる。この層を空間電荷層、あるいは空乏 層、電荷二重層ともいう。

p型半導体 n型半導体

図 4 pn 接合ダイオードのイメージ理解のための 説明図

上図のように、空乏層間に電気力線が発生 する。すなわち空乏層内で正から負の電荷 の方向に電界が発生する。空乏層外に電界 が出ないのは平行平板コンデンサに誘起さ れた面状電荷を想像すればわかりやすい。 このように空乏層が発生すると、p型半導 体のホールが n型半導体に拡散したくても、 電界で阻止されて押し返されてしまう。電 子も同様である。このように、空乏層内では 固定電荷の作る電界によりキャリアは押し 出されて空乏するので、空乏層と呼ばれる。 なお空乏層内の電界でつくられる空乏層端 間の電位差が、拡散電位、もしくは内蔵電 位、ビルトインポテンシャルと呼ばれる。

この状態で、pn 接合に順バイアスをかけ たとしよう。

図 5 順バイアスをかけたときの電界発生のイメ ージ

このときは、<u>外部バイアスによる電界が固</u> <u>定電荷で作られる電界を弱める</u>ために、p 型層からホールが n 型層に、n 型層から電 子がホールに拡散し、**拡散電流**が流れる。こ れが順バイアスで電流が流れる仕組みであ る。

逆バイアスの場合は、先ほどとは逆であ る。外部バイアスによる電界と固定電荷に よって作られる電界が同じ方向であり、空 乏層内の電界はより強められる。このとき には電子とホールの拡散は阻止され、電流 は遮断となる。

図 6 逆バイアスをかけたときの電界発生のイメ ージ

以上がダイオードの整流動作のイメージ 的な理解である。イメージの理解はより実 践に強い技術者の養成に役立つ。この章の 説明はぜひ覚えていてもらいたい。

3.空乏層内の電界強度と電位分布の計算

ここで p 型半導体のドープ濃度が Na、n 型半導体のドープ濃度が Nd として、各半導 体の長さは十分に長いとして、空乏層内の 電界および電位の分布の計算をする。 1)内蔵電位の求め方

内蔵電位は、空乏層の電界を求めてから、 空乏層の端から端まで電界強度を線積分す ることで求められるが、ここではフェルミ ディラック分布を使って求める。

空乏層内には障壁電位があり、これは内 蔵電位とも呼ばれØ_Bとするが、p 型層から n 型層へホールの拡散は起こらない。しか しフェルミディラック分布の考え方では、 p型層から n 型層へ熱励起で飛び越えて、 その先でのホールの密度は p 型半導体のホ ールの濃度とボルツマン関数の積になる。 すなわち、

$$Na \times \exp\left(-\frac{q\phi_{B}}{k_{B}T}\right)$$
(2)

となる。

図7 内蔵電位のイメージ

バンド図と異なるが、p型領域にいるホールが密 度 Na で存在するとき、熱エネルギーでn型領域 に駆け上がるホール密度は(2)式の通りである。 ここで p 型半導体のホールの濃度はアクセ プタのドーピング濃度に等しいとする。こ こで、<u>ホールが n 型半導体に流れこまない</u> ということは、(2)式の数値が n 型半導体の 少数キャリア密度に等しいと考えることが できる。すなわち

$$\frac{N_i^2}{N_d} = N_a \exp\left(-\frac{q\phi_B}{k_BT}\right)$$
(3)

となる。これから内蔵電位 φ B は次の式で 求められる。

$$\phi_{\rm B} = \frac{k_{\rm B}T}{q} \log\left(\frac{N_{\rm a}N_{\rm d}}{n_{\rm i}^2}\right) \tag{4}$$

内蔵電位は、p 型層と n 型層のドーピング 濃度が増加すると、大きくなる傾向にある。 またバンドギャップが増加すると、真性キ ャリア密度が低下し、内蔵電位は大きくな る。基本的に、内蔵電位は半導体のバンドギ ャップよりやや小さい値になる。

2)電界

・電位分布の計算

p型半導体のドープ濃度を N_a 、n型半導体のドープ濃度が N_d としたときの空乏層内部の電界を計算する。前述した過程で、空 乏層ができたときに、p型の半導体層と空 乏層幅を x_p 、n型半導体の空乏層幅が x_n とする。接合によって空乏層ができるとき電 子とホールは1:1の再結合をするために、

図 8 pn 接合の空乏層における固定電荷の分布の イメージ

空乏層内部の固定電荷の数はn側とp側で 同一になる。すなわち、

$$x_n N_d = x_p N_a$$
 (5)
の関係がなりたつ。

図 8 のような一次元の座標をもとで、空 乏層が $-x_p \leq x \leq x_n$ で広がっているとして、 この内部の電界分布を解いてみる。ガウス の式の微分形によると次の式が成り立つ。

$$\frac{\mathrm{d}\mathbf{E}}{\mathrm{d}\mathbf{x}} = -\frac{\mathrm{q}\mathbf{N}_{\mathrm{a}}}{\varepsilon} \quad \mathcal{T}\mathcal{T} \cup -\mathbf{x}_{\mathrm{p}} \leq \mathbf{x} \leq \mathbf{0}, \quad (6)$$

$$\frac{dE}{dx} = \frac{qN_d}{\epsilon} \quad \text{ttil} \ 0 \leq x \leq x_n \quad (7)$$

この式は単純に x 方向の一次元の積分で解 ける。解くにあたって、 $x \ge x_n \ge -x_p \le x$ の領 域では電界はゼロになることを考慮する。 それは空乏層自体面状の電荷の二重電荷層 であり、二重電荷層の正味の電荷を足し合 わせるとゼロとなり、外部に電気力線がで なくなると考えればよい。電界分布は次の 式であらわされる。

$$\mathbf{E} = -\frac{\mathbf{q}\mathbf{N}_{\mathbf{a}}}{\varepsilon}(x + x_{\mathbf{p}}) \quad \text{fc} \neq \mathbf{U} - x_{\mathbf{p}} \leq x \leq 0$$
(8)

$$\mathbf{E} = \frac{q\mathbf{N}_{d}}{\varepsilon}(x - x_{n}) \quad \text{true} \quad 0 \leq x \leq x_{n}$$
(9)

x=0 で電界強度は

$$\mathbf{E} = -\frac{q\mathbf{N}_a}{\varepsilon} x_p = -\frac{q\mathbf{N}_d}{\varepsilon} x_n \tag{10}$$

となる。電界が負となっているのは、電界 の向きが *x* 軸とは反対方向(負の方向)だ からである。

電位の分布は先の式をさらに1回積分し て符号を逆転させればよい。*x*=0の場所の 電位を0とすると、電位φは次の式であら わされる。

$$\phi = \frac{qN_a}{\varepsilon} \left(\frac{1}{2} x^2 + x_p x \right) - x_p \le x \le 0 \quad (11)$$

$$\phi = -\frac{qN_d}{\varepsilon} \left(\frac{1}{2} x^2 - x_n x \right) \quad 0 \le x \le x_n \quad (12)$$

となる。以上の計算結果をグラフにまとめ ると次のようになる。電界分布は直線的で あり、電位の分布は二次曲線となる。<u>電界</u> <u>の強度は pn 接合面で最大となる</u>ことにも 注意しておきたい。このことは pn 接合に バイアスが加わった時も同じである。

空乏層両端の電位差はすなわち内蔵電位 *φ*Bになるが、

図 9 ポアソン式を解いて得た pn 接合の空乏層内 の電界と電位分布

となる。ここから
$$x_dN_d = x_pN_a$$
の式を合わ

せて解くことで、

$$\phi_{\rm B} = \frac{q}{2\epsilon} (N_{\rm d} + N_{\rm a}) \frac{N_{\rm d}}{N_{\rm a}} x_{\rm n}^2$$

$$= \frac{q}{2\epsilon} (N_{\rm d} + N_{\rm a}) \frac{N_{\rm a}}{N_{\rm d}} x_p^2 (14)$$

の関係を得る。前項の説明から、
øBは

$$\phi_{\rm B} = \frac{k_{\rm B}T}{q} \log\left(\frac{N_{\rm a}N_{\rm d}}{n_{\rm i}^2}\right) \tag{15}$$

と等しくなる。ここから空乏層幅、 $x_n \ge x_p$ は次の式で表わされる

$$x_{\rm n} = \sqrt{\frac{2\varepsilon N_{\rm a}}{qN_{\rm d}(N_{\rm d} + N_{\rm a})}} \phi_{\rm B} \qquad (16)$$

$$x_{\rm p} = \sqrt{\frac{2\epsilon N_{\rm d}}{qN_{\rm a}(N_{\rm d} + N_{\rm a})}} \phi_{\rm B} \qquad (17)$$

なお外部からダイオードに順方向バイアス Vbが加わった場合は、次の式のようにな る。

$$x_{\rm n} = \sqrt{\frac{2\varepsilon N_{\rm a}}{qN_{\rm d}(N_{\rm d} + N_{\rm a})}} (\phi_{\rm B} \cdot V_{\rm b}) \qquad (18)$$

$$x_{\rm p} = \sqrt{\frac{2\varepsilon N_{\rm d}}{qN_{\rm a}(N_{\rm d} + N_{\rm a})}} (\phi_{\rm B} \cdot V_{\rm b}) \qquad (19)$$

この式からも明らかなように、空乏層はド ーピング濃度の低い方に広がり易いことが わかる。通常の pn 接合ダイオードは、p側 かn側のいずれかが高濃度で作られること が多く、両者を同じ濃度にすることは少な い。それは、ダイオードを形成する場合、通 常 p型或いは n型の 10¹⁴/cm³程度の低濃度 基板に拡散技術をつかって反対の導電型の 層を形成することで作られるからである。 その場合、空乏層は選択的に濃度の薄い側 に広がるとみなしてよい。 pn 接合に逆バイアスを加えたときに、 空乏層はバイアス電圧のルートに比例して 広がることも覚えておきたい。さらに<u>ドー</u> ピング濃度を下げれば下げるほど空乏層幅 は広がり易く、高耐圧なダイオードを形成 するためには、すくなくともpあるいは n の層のいずれか一方をより低濃度な層とす る必要がある。

空乏層幅と電界強度、電位の計算に便利 なエクセルシートが筆者のホームページか らダウンロードできるので、参考にしてい ただきたい。

*<u>http://fhirose.yz.yamagata-u.ac.jp</u>内の 授業のページから、半導体工学特論の pc_calc.xls を指定してください。

4.pn 接合のバンド図での表現

バンド図は縦軸が電子の結合エネルギー を表し、下方向を正にプロットすることで、 その高低は静電的位置エネルギーを表して いる。電子は負電荷であり、バンド図が高く ずれるのは、電位としては低くなる方向を 表す。無バイアスの pn 接合の場合は、p 側 と n 型のフェルミレベルを一致させるよう に書く。

図 10 pn 接合のバンド図による表現

図の中において、フェルミレベルがバンド の中央、すなわち価電子帯と伝導帯の2分 点とフェルミレベルが一致する場所が、pn 接合面である。またバンドに曲がりが生じ ている部分は、電界が生じていることを表 し、そこが空乏層になる。

図 11 pn 接合のバンド図による表現

バイアスが加わると、空乏層内のフェル ミレベルにバイアス分だけずれが生じる。 正にバイアスされると、バンド図を下げて 書く。負なら持ち上げて書くことになる。

5. 容量—電圧特性(C-V 特性)

pn 接合の空乏層は絶縁領域であり、見掛 け上 Si の誘電体を挟んだ、空乏層の幅をも つ平行平板とみなすことができる。この容 量のことを**接合容量**という。単位面積あた りの接合容量 C は次の式で表される。

$$C = \frac{\varepsilon_0 \varepsilon_1}{\left(x_n + x_p\right)} \tag{20}$$

ここで ε o と ε 1 はそれぞれ真空の誘電率、 半導体の比誘電率となる。仮に、n 型層が p 型層に対して非常に高濃度層である場合、 p 型層に選択的に空乏層が広がるため、接 合容量は次の式で記述される。

$$C = \sqrt{\frac{q\epsilon_0\epsilon_1 N_a}{2(\phi_B - V_b)}}$$
(21)

これが pn 接合の C-V 特性の式となる。こ の式から次の C⁻²-V の関係式を得る。

$$C^{-2} = \frac{2}{q\epsilon_0 \epsilon_1 N_a} (\phi_B - V_b) \qquad (22)$$

この式は半導体層の低濃度層のドーピング 濃度を求めるのに大変便利な式である。n 型層に対して、p型層の電位をバイアスVb とし、容量をLCRメーターで計測して、C[・] 2-Vの関係を散布図としてグラフ化すると 図のように直線で示される。この特性をと ることで、内蔵電位やドーピング濃度の測 定をすることができる。ドーピング濃度が 変化していても、バイアスに応じた空乏層 幅と C^{・2}の変化からドーピング濃度の深さ 分布(プロファイル)を求めることができる。

図 12 C⁻²-V 特性の例

6.順バイアス電流計算

pn 接合に順方向バイアスを加えた場合 は拡散電流と再結合電流が流れる。拡散電 流とは、順バイアスによって空乏層にでき る電位障壁が弱められて、p型層からn型 層にホールが、n型層からp型層に電子が 注入されることによって、流れる電流であ る。再結合電流は空乏層内の再結合準位を 通してp型層のホールとn型層の電子が再 結合して電流として流れるものである。こ の節では、拡散電流の流れるイメージを理 解していただいて、次に式による拡散電流 の導出、最後に再結合電流についても概説 する。

(1) 拡散電流

ここで pn 接合の内蔵電位による障壁の イメージを思い出してほしい。まず自分は p型層のなかにいるホールとなったと考え る。ホールは、濃度の薄い n 型層に拡散し たいが、その前を内蔵電位による障壁が立 ちはだかっている。

図 13 拡散電流を考えるための出発点のイメージ

この接合に順バイアスが加えられると、電 位障壁である内蔵電位が弱められ、p型層 のホールのごく一部がn型層に打ち上げら れる。打ち上げられる確率は、フェルミディ ラック分布で計算できる。p型層のホール 濃度をドーピング濃度 Naであらわし、順バ イアス V_b がかけられて、内蔵電位が弱めら れて $\phi_B - V_b$ の障壁となったとして、n 型層 の空乏層端でのホール濃度 pn は

$$P_{\rm n} = N_{\rm a} \exp\left(-\frac{\phi_{\rm B} - V_{\rm b}}{k_{\rm B}T}\right) \tag{13}$$

で表わされる。

図 14 拡散電流を考えるためのイメージ

このとき、n 型層の左端に打ち上げられた ホールはより濃度の薄い遠方に拡散で流れ ていく。この注入されたホールは拡散の過 程で電子と再結合して消滅もしていくのだ が、拡散による流れがホール電流を決める ことになる。

より詳細をみてみよう。n 型層の左端を x =0 として、縦軸にホールの濃度をとると 次のようなグラフとなる。

図 15 pn 接合において n 型層にホールが注入さ れたときの n 型層におけるホール濃度分布

再結合によって、xが大きくになるに従って、 ホール濃度は小さくなり、最後は平衡状態 のときの n 型層の少数キャリア濃度 pn0 に 近づく。 p_{n0} は、n型層のドーピング濃度を Ndとしたときに、 ni^2/Nd に等しい。

この濃度と距離 x の関係を解くには次の 電荷連続の式を解かなければならない。

$$0 = D_p \frac{\partial^2 p}{\partial x^2} - \frac{p - p_{n0}}{\tau_p} \quad (24)$$

ここでの τ_p はホールの n 型層中のライフ タイムである。 D_p はホールの n 型層中の拡 散係数である。この式を解くと、ホール濃度 は

$$\mathbf{p}(x) = \left(\mathbf{p}_{n} - \mathbf{p}_{n0}\right) \exp\left(-\frac{x}{\sqrt{D_{p}\tau_{p}}}\right) + \mathbf{p}_{n0} \quad (25)$$

となる。単位面積当たりのホール電流 Ih は 次の式で表わされる。

$$I_{h} = \left[-qD_{p}\frac{dp}{dx}\right]_{x=0}$$
$$= \frac{qD_{p}}{\sqrt{D_{p}\tau_{p}}}p_{n}$$
$$= \frac{qD_{p}}{\sqrt{D_{p}\tau_{p}}}N_{a}\exp\left(-\frac{q(\emptyset_{B}-V_{b})}{k_{B}T}\right) \qquad (26)$$

ここで $\sqrt{D_p \tau_p}$ は拡散長と呼ばれるもので、 ホールが n 型層にはいって、 1 / e になる 位置を表す。多くの教科書では、 ϕ_B を省く ために pno=ni² / Nd と $\phi_B = \frac{k_B T}{q} log \left(\frac{N_a N_d}{n_i^2} \right)$ の 関係を使って、ホール電流を次の式で表わ している。

$$I_{h} = \frac{qD_{p}}{\sqrt{D_{p}\tau_{p}}}p_{n0}\exp\left(\frac{qV_{b}}{k_{B}T}\right)$$
(27)

筆者はこの式は初学者には抵抗があると危 惧しているところだが、他の教科書と混同 をさけるために、あえてここで記述してお く。

今までホールの事ばかり述べたが、電子 も上記と同じ現象がおこっている。電子電

流 I_e は
$$I_e = \frac{qD_n}{\sqrt{D_n\tau_n}} N_d \exp\left(-\frac{q(\emptyset_B - V_b)}{k_BT}\right)$$
$$= \frac{qD_n}{\sqrt{D_n\tau_n}} n_{p0} \exp\left(\frac{qV_b}{k_BT}\right)$$
(28)

となる。

単位面積当たりの順方向電流 If とするとホール電流と電子電流の総和になる。

$$\begin{split} I_{f} &= I_{h} + I_{e} \\ &= q \left(\frac{D_{p}}{\sqrt{D_{p}\tau_{p}}} N_{a} + \frac{D_{n}}{\sqrt{D_{n}\tau_{n}}} N_{d} \right) \\ &\quad \cdot \exp \left(- \frac{q(\emptyset_{B} - V_{b})}{k_{B}T} \right) \\ &= q \left(\frac{D_{p}}{\sqrt{D_{p}\tau_{p}}} N_{a} + \frac{D_{n}}{\sqrt{D_{n}\tau_{n}}} N_{d} \right) \exp \left(- \frac{q\emptyset_{B}}{k_{B}T} \right) \\ &\quad \cdot \exp \left(\frac{qV_{b}}{k_{B}T} \right) \quad (29) \end{split}$$

ここまでたくさんの計算がでてきたが、 初学者は式の暗記ではなく、キャリアの流 れのイメージをつかむことが重要である。 式の暗記ではなく、次の式から読み取れる ことを覚えていてもらいたい。

(2)再結合電流

拡散電流は先に述べたように、exp(^{qVb}/_{kgT})に
 比例する電流が流れるが、空乏層内で再結
 合がおこるとexp(^{qVb}/_{2kgT})に比例した電流が流

れる。これは次の図にも示されるように、再 結合電流は pn 接合の空乏層内でのバンド 中央にある準位を通じて発生するため、バ ンドギャップの半分のエネルギー障壁を超 える確率に比例するようにみなせるからで ある。

図 16 pn 接合における再結合電流の発生する メカニズム

再結合電流は再結合を起こす要因、すなわ ち不純物や欠陥が空乏層内にあっておこる ものであり、ダイオードを作る半導体層の 品質が悪ければ増加する傾向にある。

再結合電流は低電流領域で主であり、拡 散電流は比較的電圧が高い領域でおこる。 ダイオードの V-I 特性を片対数グラフにす ると、電流領域によって、再結合電流、拡散 電流、直列抵抗の領域が現れ、それぞれ傾き が異なる。再結合電流は再結合準位の密度 で制限されるため、比較的電流の低い領域 のみで現れる。高電流の領域になると、ダイ オードの接合以外の部分の抵抗成分が電流 を制限するようになり、片対数グラフでは 傾きが小さくなる。

図 17 pn 接合における順方向電流特性からの再 結合電流と拡散電流の領域

実際のダイオードを測定してみると、先 の図のような急激に傾きが変化するグラフ にはならず、片対数のグラフで傾きが q/k_BT から $q/2k_BT$ の間の直線になることが多い。 傾きが q/nk_BT としたときに、n の値を理想 係数という。よくダイオードの整流方程式 も、理想係数を含めて次のように書かれる。

$$I = I_0 \left\{ \exp\left(\frac{qV}{nk_BT}\right) - 1 \right\}$$
(30)

n の値が1であれば、再結合電流成分を全 く含まない理想ダイオードとすることがで きる。nが2に近ければ、欠陥などが多いこ とによる再結合電流成分の大きいダイオー ドとなる。

7.絶縁破壊

Siのpn接合においてp型およびn型の ドーピング濃度が両方とも 10¹⁸/cm³以上 の濃度で接合が作られると、空乏層幅が 10 nm以下になり、比較的低い電圧でもトンネ ル効果により降伏電流が流れる。この場合 は**ツェナー降伏**という。このツェナー降伏 の電圧は、ドーピング濃度で簡単に制御で きるため、これを利用して定電圧ダイオー ド(**ツェナーダイオード**)とすることができ る。

Si ダイオードにおいて、p型あるいは n 型のいずれか一方が 10¹⁸/cm³ 以上の高濃 度で、もう片方がそれより低濃度である場 合を**片側階段接合**という。片側階段接合の 場合、または両方の濃度が 10¹⁸/cm³以下の 低濃度場合、pn 接合に逆バイアスを加えて、 電圧を高めていくと、pn 接合面付近の電界 強度が増加し、あるところでキャリアが雪 崩のように増倍して降伏する、雪崩降伏(ア バランシェ降伏)が起こる。これは空乏層内 に熱励起で発生した電子が空乏層内で電界 の力を受けて加速され、格子に散乱される 過程で、価電子を次々と弾き飛ばして自由 電子を作り出し、雪崩のように電子が増え て、大きな電流が流れてしまう現象である。

図 18 に、高濃度の n 型 Si に低濃度の p 型 Si を形成した時の雪崩降伏がおきる接合 面の電界強度を示した。これは、低濃度側の ドーピングレベルに依存することが知られ ている。

逆バイアスをかけたときの接合面の電界 強度が図 18 の雪崩降伏電界強度と一致す ると雪崩降伏が起こると考え、理想耐圧を 見積もることができる。実際の試作では、こ の半分の耐圧になることが多く、雪崩降伏 電界強度の半分の電界強度で降伏がおこる として、耐圧の見積もりを行う。

このほか、実際のダイオードで忘れては ならないのは接合表面での絶縁破壊である。 これは pn の接合面が外に露出される部分 で電界集中がおきて、絶縁破壊が起きる現 象であるが、pn 接合を不活性膜で被覆した り、ガードリングと呼ばれる電界緩和構造 を作りつけたりするなどの対策が施される。

電界強度

8. pin ダイオードと伝導度変調

実際のダイオードにおいて、順バイアス 時の抵抗を下げることは、通電時のジュー ル損失を下げるために望ましいことである。 順バイアス時の抵抗は ON 抵抗とも呼ばれ るが、半導体と電極の接触抵抗(コンタクト 抵抗)も ON 抵抗の要因の一つである。コ ンタクト抵抗を下げるには、pn 接合の電極 との接触部分を高濃度にドーピングを行う のが一般的である。高濃度にドーピングす ることを添え字の+の記号をつかって、p+ あるいは n+と表わすが、多くのダイオード が n+/n-/p+のように真中に低濃度層を挟ん だような構造になっている。このようなダ イオードは pin ダイオードとよび、ほとん どのダイオードは実質 pin ダイオード構造 をなしている。pin の i の部分は isolation の絶縁層を表す。このようなダイオードは、 順バイアス時に高濃度の n 層、 p 層から電 子とホールが i 層に流れ込み、とくに大電 流においては、見掛け上 i 層の部分が高濃 度にドープされたかのように働き、非常に 低抵抗となる。このような抵抗率が下がる 現象を伝導度変調と呼ぶ。

pin ダイオードが逆バイアスのときには、 i層、すなわち真中の低濃度層に選択的に空 乏層が広がる。したがって、pin ダイオード の耐圧 (降伏電圧) は i 層のドーピング濃度 と膜厚によって決まる。通常、Si の pin ダ イオードでは、ドーピング濃度を 10^{14} /cm³ 程度に抑えて、抵抗率では 15Ω cm 程度に 設定し、厚みとして 10μ mで耐圧 75V 程度 である。 20μ m で 150V、 50μ m で 500V と なる。

9.逆方向回復過程

ダイオードを高周波電流の整流や検波に 用いるときに、どの程度までの高周波で整 流特性が得られるかは、この逆方向回復過 程の時間、逆方向回復時間あるいはリカバ リ時間で決まる。

pn ダイオード、pin ダイオード共に順バ イアスをかけて順方向電流を流していると ころから、急に逆バイアスに切り替えると 逆バイアスであっても切り替え直後に負の 電流が一定時間流れる。このような負の電 流が流れる過程を逆方向回復過程(リカバ リ過程)と呼ぶ。負の電流が流れ始めから最 大の逆方向電流(リカバリ電流)の10%ま で消失する時間をリカバリ時間という。

逆方向回復過程においては、空乏層が大 きく広がる動作をするが、そのときの空乏 化に伴ってキャリアが引き出されて、負の 電流が流れる。pin ダイオードにおいては、 i層の蓄積電荷が吐き出される。すなわち逆 方向回復時間は pin ダイオードの順バイア ス時の蓄積電荷量に依存し、順方向電流が 大きくなるほど増加する。

実際の回路においてダイオードで順バイ アスと逆バイアスを交互に切り替わるよう な整流回路やスイッチ回路においては、逆 方向回復時間に気をつけなければならない。 この逆方向回復の間、ダイオードは整流子 として動作しない。単なる抵抗になる。通常 100V 程度の整流に用いられるタイプのダ イオードでは、リカバリ時間は 100~500 ns 程度であり、整流子としての限界は数十 kHz 程度と考えた方がよい。

図19 逆方向回復過程の説明図

(b) 電流波形

図 20 逆方向回復波形の例

例えば MHz オーダーの交流をかけた場 合、逆電流が無視できなくなり、整流動作は できなくなる。

リカバリ時間が短く、高速動作ができる ダイオードを特別に Fast Recovery Diode (FRD) と呼ぶ。このような高速リカ バリのものは、順方向抵抗が高いものが多 い。高速と順方向抵抗はトレードオフ(二立 背反)の関係にある。また高速リカバリのも のは、リカバリ波形が急峻なため、ノイズを 発生させるものもあるので、低ノイズ回路 に使う時は気をつける必要がある。

9.実際のダイオードの構造

ここでは、実際のダイオードの構造につ いて図を用いて解説する。ここで紹介され る図は断面を表わした模式図になる。実際 のダイオードには各種各様ではあるが、整 流用の大電流タイプのものだと、メサ型と 呼ばれる構造をしている。メサの意味は台 形であるが、このような構造は周囲との絶 縁をとり易く高耐圧(50V以上)で大電流 (100 A/cm²) のもので使われている。リー ク電流の発生因となる p層と n-層との界面 の側壁の部分をガラスなどの絶縁層で被覆 し、空気による酸化やごみの付着をさける ようになっている。TiSi 膜はAl との接触抵 抗を低減させるための膜で、コンタクト層 と呼ばれるものである。アノード電極は0.5 um 程度の Al 層を介して Al ワイヤに接続 され、カソード側は Ni 板などに Ni 層を介 して半田付けされる。

この例は Si ダイオードに順方向に 20A 流した 後、逆バイアスをかけたときのリカバリ波形の測 定例。リカバリ時間は約 350ns。

図 21 メサ型ダイオードの実例

集積回路の中ではプレーナ構造をとるために、つぎの図 22 のような部分拡散法を用いて形成される。

図 22 プレーナ型ダイオードの実例

10. ショートダイオード

ダイオードの順方向電流の主たる成分は 拡散電流である。拡散電流の式について重 複を恐れず、もう一度ここで記述する。

$$I_{h} = \frac{qD_{p}}{\sqrt{D_{p}\tau_{p}}} p_{n0} \exp\left(\frac{qV_{b}}{k_{B}T}\right)$$
(31)

$$I_{e} = \frac{qD_{n}}{\sqrt{D_{n}\tau_{n}}} n_{p0} \exp\left(\frac{qV_{b}}{k_{B}T}\right)$$
(32)

この式において $\sqrt{D\tau}$ は拡散長と呼ばれる もので、ホールを例にとって説明すると、p 型層から n 型層に注入されたホールが空乏 層端から p 型層の遠い方に拡散されるが、 濃度が空乏層端から 1/e になる距離がこの 拡散長である。例えば、n 型層での少数キャ リアの寿命 τ_n が 100 μ s であるとして、n 型層での拡散係数が 10 cm²/s とすると、拡 散長 $\sqrt{D_n\tau_n}$ は 316 μ mとなる。この長さを 実際に作るとなると容易ではなく、ほとん どの場合で実際のダイオードは拡散長より 薄い層で構成されている。

上記の拡散電流の式は、半導体層が非常 に厚く拡散長に対しても十分に厚いという 前提で解かれている。実際のダイオードで は拡散長より薄く、例えば金属電極が拡散 長より薄い位置にある場合、このようなダ イオードをショートダイオードと呼ぶ。

図 23 ショートダイオードの説明図

図 23 のような、p 型層の膜厚が拡散長よ り薄い場合で、金属電極が付いている場合、 金属との界面で無限大の再結合速度がある と仮定する。そのときにホールの拡散電流 の式は次のようになる。

$$I_{e} = \frac{qD_{n}}{W_{p}} n_{p0} \exp\left(\frac{qV_{b}}{k_{B}T}\right)$$
(31)

ここで、 W_p は p 型層の厚みである。このと きの p 型層へ注入された電子の濃度勾配は 直線的とみなされるが、この近似が成り立 つのは、あくまでも電流密度が十分に小さ い時である

図 24 p 型層が拡散長より薄い場合の注入された ホール濃度の分布

このようなショートダイオードでは、ロ ングの場合と比べて、実質の拡散長が短く なり、拡散電流が増強される、すなわち良く 流れるダイオードになることが期待される が、100A/cm²程度の高い電流密度でショー トダイオードを使う場合は、金属界面での 再結合速度は有限であり、期待されるほど の電流の増強は現れない。

半導体開発の現場でしばしば使われる電 子デバイスシミュレータの多くが、この金 属界面での再結合速度を無限として結果を 出すが、この仮定が実物とのずれの原因に なることが多い。そもそも、金属界面での電 荷の再結合過程はよくわかっておらず、解 析研究が今後も必要である。

11.高速低損失化への挑戦

pn ダイオードが産業上もっとも活用さ れているのは、整流用途とスイッチ回路の 還流ダイオードとしてである。スイッチ回 路は我々の身の周りの電気製品の省エネを 実現するために大きな役割を果たしてい る。その例としてスイッチ式電源でのダイ オードの利用例を図 25 に示す。

図 25 スイッチ式電源でのダイオードとしての利 用例 FRD は Fast Recovery Diode の略

これはパソコンなどの電源に広く用いら れているもので、トランジスタが電子スイ ッチの役割をしている。この回路では制御 回路の信号の ON と OFF の比をかえるこ とで、負荷へ伝える電圧を調整するように なっている。トランスレスであり、非常に 小型で、パソコンの電源はすべてこの回路 となっている。この回路において、トラン ジスタがオフになる瞬間、インダクターか ら逆起電力が発生しそれを還流させるため に、ダイオードが使われる。このようなダ イオードを還流ダイオード(Free Wheel Diode)と呼ばれている。このような回路で はインダクターの小型化のために、ダイオ ードの高速化が求められるが、先述したよ うに逆方向回復過程のために、制御周波数 の高周波化には限界がある。このような用 途のために FRD が用いられるが、一方 で、高速になると ON 抵抗が高くなり、発 熱が大きくなるという問題がある。pin 型 のダイオードにおいて、150V クラスのダ イオードの場合、高速タイプであると、リ カバリ時間が 50n s 程度のものが出回って

いるが、ON 抵抗は 1 cm^2 換算で $15 \text{ m} \Omega$ 程度になる。これは仮に 100 A 流した時に 150 W の発熱になり、大きな問題である。 一方低抵抗品では 1 cm^2 換算で $8 \text{ m} \Omega$ 程度 のものがあるが、リカバリ時間は 400 ns程度と低速になる。このように、ON 抵抗 と高速化は二立背反の関係にある。

高速化のためには、半導体層にライフ タイムキラーとなる Pt やAu をドーピン グする方法がとられるが、ライフタイムの 最適点の調整が難しい。筆者の研究ではダ イオードの構造にもよるが、i層のライフ タイムを数十 ns に調整することで、ON 抵抗を損なうことなくリカバリ時間を縮減 できることを報告しているが、実際の調整 は困難である。さらにこのようなライフ タイムキラーによる調整はダイオードのリ ーク電流が増えたり、また 100℃の高温 では殆ど高速化の効果が表れないなどの問 題も生じる。一方、ライフタイムの調整法 としてイオン照射や電子線照射の方法もと られるが、こちらは装置が一基数億円ちか くして、枚葉処理しかできないことなどか ら、コスト高の問題が生じる。

筆者はかねてからこの問題に着目し、p 型層にSiGe 膜を用いて、局所的にライフ タイム調整を行い、ON 抵抗を損なわずに 高速化できることを報告している。この方 法によれば、150 V クラスのダイオードで リカバリ時間 30 ns、ON 抵抗率として 7 mΩcm²が実現できる可能性があることを 示している。このほかの取り組みとして、 単純に平坦な膜の積み重ねではなく、i層 の中身に周期的なモザイク構造にするな ど、構造からの高性能化の研究がデバイス シミュレーションを用いて進められてい る。